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Series of molecular graphs having a preponderance of common eigenvalues are identified, and their structural
relationships studied. A framework for the analysis of graphitic polymers is provided by an infinite two-
dimensional mapping. Collections of subspectral structures (molecular graphs) and their eigenvalues are
tabulated for the first time.

The analysis ofπ-electronic structure of polymer networks
continues to attract the interest of theoretical1 and synthetic2-7

researchers. One of the major objectives of these studies is to
gain insight on the design of potential organic conductors and
ferromagnets. Extended pπ-conjugated systems represent the
simplest models for molecular wires. The reduction of the
HOMO-LUMO bandgap in conjugated systems will enhance
the thermal population of the conduction band and thus increase
the number of charge carriers, and minimizing the degree of
bond length alternation in a conjugated path which is the origin
of Peierls instability will help preserve the proximity or
degeneracy between the HOMO-LUMO electronic levels.
Thus, researchers need to learn what structural variables control
the HOMO-LUMO energy gap and bond length alternation in
pπ-electronic systems before organic conductors can be de-
signed. There is no such thing as a ferromagnetic molecule.
However, if parallel spin alignment can be induced in molecules,
like polymethyleneacetylene, while it is in the condensed phase,
a paramagnetic (and possibly a ferromagnetic) material would
be produced.2 Since electron spins tend to align antiparallel to
one another, currently no organic ferromagnetic material has
yet been designed and synthesized.
Three general theoretical approaches can be identified: study

of infinitely long strips, belt-shaped rings, and a series of strips
that are progressively incremented (i.e., a homologous series).
This latter approach follows more closely the way experimental-
ists are capable of studying very large molecules and is
analogous to the standard methodology in which molecular
systems are partitioned into smaller elementary substructures.
For example, infinitely long polyacene strips and cyclic poly-
acene rings have been frequent objects of theoretical study, but
are experimentally unknown, whereas members of the homolo-
gous acene series from naphthalene to heptacene are known to
progressively decrease in stability and ease of experimental
manipulation. Nevertheless, these experimental results for
smaller homologues along with theoretical molecular modeling
studies1 suggest that polyacenes will be conductive and reactive
materials but not ferromagnetic.8

By assuming infinitely long polyacenes can be modeled as
infinite belt-shaped rings ([∞]cyclacenes), its irreducible sub-
structure can be obtained.9,10 Hosoya and co-workers have
shown that the density of states of cyclic and linear polyene
systems having common repetitive units are identical in the
infinite limit. Also, they showed that the singular points of the
density of states of infinitely large polyenes correspond to the
energy levels present in the cyclic dimer (or cyclic monomer
in some cases).10 By a totally different approach, we showed8

that successive incremental embedding of infinite strips fre-
quently can be used to recognize the existence of a valence band
to conduction band energy gap (HOMO-LUMO gap) after just
a few iterations. Successive incremental embedding on an
infinitely long conjugated polymer strip consists of embedding
with successively larger homologous fragments. These ap-
proaches suggest that infinite polyacene should have a zero
bandgap.
In the model analysis of large finite polyenes by infinite

analogue systems, a number of ambiguities arise, particularly
in regard to bond alternation. Consider the use of the cyclic
boundary condition in the analysis of linear polymeric polyenes.
For finite, planar, monocyclic 4n+2 polyenes, like benzene,
there is no tendency toward bond alternation, whereas for finite
linear polyenes, like butadiene and hexatriene, significant bond
alternation occurs. From resonance theory, monocyclic polyenes
with 4n+2 pπ-electrons have two Kekule´ structures (K ) 2)
and linear polyenes have one (K ) 1). In other words, bond
alternation is a linear polyene “end effect” which is assumed to
disappear at infinite length. Let us now consider the use of
cyclic acene rings in the analysis of linear acenes. Regardless
of the number hexagonal rings in the cyclic acene ringK ) 4,
whereas for linear acenesK ) #rings+ 1. The number of
Kekuléstructures in the former can be visualized as arising from
two cyclic polyenes joined together via every other carbon, and
the number of Kekule´ structures in the latter can increase without
limit. Given this aforementioned, it appears somewhat amazing
that both infinite polyene ring systems and linear systems made
of the same repeating unit converge to the same density of states.
This result suggests that aromaticity disappears in extended
π-electronic systems.11

In this paper, the analysis of numerous pairs of series
composed of strongly subspectral molecular graphs is presented
and some of the aspects discussed above will be further
augmented and clarified. An analytical framework for graphitic
polymers is established by the pairwise construction of infinite
two-dimensional arrays whereby almost-isospectral pairs of
molecular graphs are correlated.

Basic Terminology

A molecular graph is the C-C σ-bond skeleton representation
of a fully conjugated polyene molecule. A molecular graph,
therefore, omits the C and H atoms and the C-H and pπ-bonds.
Since most polycyclic conjugated polyenes can have more than
one arrangement of its pπ-bonds, the molecular graph repre-
sentation avoids artificially representing these molecular systems
by writing only one of these arrangements. Molecular energy
level and eigenvalue are equivalent, as are wave function andX Abstract published inAdVance ACS Abstracts,September 1, 1997.
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eigenvector. The highest occupied MO (HOMO) and the lowest
unoccupied MO (LUMO) are called the frontier MOs (FMOs).
An alternant hydrocarbon (AH) is a fully conjugated polyene
structure without any odd size rings. In AHs every other carbon
vertex can be starred so as no two starred or nonstarred positions
are adjacent. Functional groups are substructures (groups of
interconnected atoms) having a characteristic set of properties
that are conveyed to the whole structure with only minor
perturbation. If two molecular graphs have at least one
eigenvalue in common, they are said to be subspectral. Two
molecular graphs arestrongly subspectral if they have a
preponderance of eigenvalues in common.12 Two strongly
subspectral molecular graphs arealmost-isospectralif their
unique eigenvalues are zero or an integer.11 The overlapping
close proximity of energy levels in infinitely largeπ-electronic
networks results in bands bounded by singularities.10 Successive
attachment of given aufbau units under prescribed rules can lead
to families of molecular graphs having specific characteristics.

Molecular Orbital Functional Groups

The structural origin of subspectrality among molecular
graphs, particularly with commonly recurring eigenvalues,
constitutes an area that we refer to as molecular orbital functional
groups.13 Embedding14 and right-hand mirror-plane fragments15

are examples of two classes of molecular orbital functional
groups. Embedding fragments are called Hall subgraphs,9,14and
right-hand mirror-plane fragments are called McClelland sub-
graphs;9,15,16 McClelland subgraphs have all normal carbon
vertexes (type I) or normal carbon vertexes and-1 weighted

vertexes along the side having bonds severed by the mirror-
plane (type II). These MO functional groups are used in
similarity comparisons. Strongly subspectral molecules are
more similar than molecules without common eigenvalues.

Almost-Isospectral Series of Conjugated Hydrocarbon
Molecules

Through a combination of embedding and mirror-plane
fragmentation, one can inductively prove that the series in
Figures 1-6 have members that are pairwise almost-isospectral.
The unique 0,0,(1, and(2 eigenvalue pairs present identically
in all members of each relevant series are noted next to the
first-generation structures in Figures 1-6. The infinite limit
member pairs of these series (Figures 1-6) become, in effect,
isospectral, i.e., have the same density of states. Four other
pairs of series of molecular graphs that are strongly subspectral,
two of which are almost-isospectral, have been reported.11-12

Polyacetylene

Figure 1 summarizes a well-known equivalency between
linear and cyclic polyenes which is also expressed by the Frost
circle mnemonic. This equivalency is quite evident when the
eigenvalues of two identical polyenes are compared with the
eigenvalues of a monocyclic polyene having two more carbon
vertexes. Both molecular graph sets have the same doubly
degenerate eigenvalues with the monocyclic polyene having the
additional eigenvalues of(2. Though the upper infinite series
in Figure 1 is comprised of disconnected components, this

Figure 1. Two series of molecular graphs that are almost-isospectral. The unmatched eigenvalues are next to the lower first-generation structure.

Figure 2. Two series of complementary molecular graphs that are also almost-isospectral. The unmatched eigenvalues are indicated at the beginning
next to the first-generation structures of each series.
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constitutes the simplest example of two series of molecular
graphs that are pairwise almost-isospectral. Note that the two
linear polyenes in Figure 1 are Hall subgraphs9,14 of the
corresponding monocyclic polyene. This pairwise matching of
eigenvalues between the upper and lower molecular graphs of
Figure 1 constitutes a proof that both infinitely large linear and

cyclic polyenes have the same density of states, in agreement
with the work of Hosoya and co-workers.10

Polyacenes

Joining two polyacetylene chains together at every other
carbon and dispensing with the detached hydrogens generate

Figure 3. Two series of molecular graphs that are almost-isospectral. The unmatched eigenvalues are next to the first-generation structures.

Figure 4. Two series of molecular graphs that are almost-isospectral. The unmatched eigenvalues are next to the lower first-generation structure.

Figure 5. Two series of molecular graphs that are almost-isospectral. The unmatched eigenvalues are next to the first-generation structures.
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polyacenes, i.e., linear fused benzene rings, the smallest
members of which are shown in Figure 2 (bottom series). A
large to infinite acene is called polyacene by some investiga-
tors.10 The synthesis of substituted polybenzanthracenes that
are intermediate to polyacenes and polyphenanthrenes has been
reported by Goldfinger and Swager.4 Each successive pair of
almost-isospectral molecules in Figure 2 differ from the
immediately preceding pair by the elementary aufbau unit of
C4H2.17 Bisallyl is the first generation member of the bisallyl/
1,2,4,5-tetramethylenebenzene series in Figure 2, bisallyl/p-
bisallylbenzene in Figure 3 (lower series), and the bisallyl/
[4]radialene series in Figure 4 of ref 11. Subtraction of C4H2

from the first-generation members in Figure 2 begets two methyl
radicals from bisallyl and ethene from benzene, which might
be regarded as the zero-generation members of these series. As
it will become apparent, the pairs of series in Figures 1-6 are
related by a certain consistency and continuity. Each almost-
isospectral pair of molecular graphs in Figures 2-6 (and Figure
4 in ref 11) differ by 2â in Eπ (i.e., ∆Eπ ) 2â). Except for
benzene, all the molecular graphs in Figures 1-6 haveD2h

symmetry. The acene (benzene, naphthalene, etc.) series in
Figure 2 have an unmatched(1 eigenvalue pair. The initial
member molecules in each series are being actively investi-
gated.18,19 The first- and second-generation diradicals, bisallyl18

and 1,2,4,5-tetramethylenebenzene,19 and benzene through hep-
tacene20 in Figure 2 are known molecular species. Hosoya and
co-workers have shown that infinite polyacetylene and poly-
acenes have zero bandgaps in the absence of Peierls distortion.10

All acenes can be embedded by ethene and therefore have
the (1 eigenvalues of ethene.9,14,20 The bisallyl/1,2,4,5-
tetramethylenebenzene series in Figure 2 have an unmatched
zero-zero (0,0) eigenvalue pair because all its members can
be embedded two distinct ways by methyl radical.9,14,20 In
Figure 2, bisallyl can be embedded on every other molecular
graph of the first series and benzene can be embedded on every
other molecular graph of the second series, which results in
these systems having the eigenvalues of(1 and(2. Similarly,

1,2,4,5-tetramethylenebenzene (2,3,5,6-tetramethyene-1,4-cy-
clohexyldiyl) can be embedded on every third molecular graph
in the first series and naphthalene can be embedded on every
third molecular graph in the second series. The third-generation
molecular graphs in Figure 2 can be embedded on every fourth
molecular graph of the corresponding series, the fourth-
generation molecular graphs on the fifth molecular graph, and
so on. Through a combination of mirror-plane fragmentation15

and embedding, it is easy to inductively prove that all the
members of the two series are pairwise almost-isospectral and
that their right-hand mirror-plane fragments are almost-self-
complementary.16 All the diradicals in Figure 2 are reactive
species and have disjoint NBMOs.18 Benzene is the prototype
molecule for aromaticity, and it has been shown that resonance
energy (RE) contributions decrease rapidly with increasing
circuit size and the additional RE per acene ring decreases.21,22

The calculation and theory of REs for nonradical benzenoids
and monoradical AHs is well developed, but the calculation of
REs for diradical and higher polyradical systems has not been
accomplished. As the number of acene rings increases, the
corresponding HOMO values decrease, approaching zero,
resulting in progressively more reactive acenes. For example,
heptacene is so reactive that it has not been completely
characterized and octacene is currently unknown.20 Thus, the
chemistry of the members of the two series in Figure 2 are
approaching each other and the infinite limit members of the
two series are isospectral, i.e., have the same density of states.

Polyphenylenes

Figures 3 and 4 present two pairs of almost-isospectral series
that in the infinite limit reduce to the same linear polyphenylene
polymer but with dramatically different end effects. The first
two generation structures in Figure 3 are benzene and bisallyl,
exactly the same first generation structures as found in Figure
2 but oriented differently by 90°. The aufbau unit for generation
of successive structures in Figures 3 and 4 is C6H4 compared

Figure 6. Two series of molecular graphs that are almost-isospectral. The unmatched eigenvalues are next to the first-generation structures.

7170 J. Phys. Chem. A, Vol. 101, No. 38, 1997 Dias



to C4H2 for the structures of Figure 2. As shown by Hosoya
and co-workers and Hall and Arimoto,10 infinite poly(p-
phenylene), the limit member of the upper series in Figure 3,
has a nonzero bandgap and is expected to be nonconductive.
Since infinite poly(p,p-bisallylphenylene), the limit member of
the lower series in Figure 3, has the same density of states, it
is also expected to be nonconductive; note that its doubly
degenerate zero level contains only two electrons, which makes
an insignificant contribution compared to the remaining infinite
number of electrons. In this case, the bisallyl end effect is
negligible and can be disregarded. The results of Figure 4
demonstrate that some types of end effects can be significant.
The quino structures in Figure 4 cannot have equivalent cyclic
structures for obtaining the singular points of the density of states
per the method of Hosoya and co-workers.10 Quino structures
are characterized by a greater degree of bond alternation. While
the limit members of the series in Figure 4 are also polyphe-
nylenes, the quino type of end effect makes a substantial
contribution, causing a dramatic change in the density of states,
for the series in Figure 4 have a zero bandgap and are expected
to be electrically conductive. Hall and Arimoto have studied
the poly(p-phenylene) series (Figure 3) and the poly(p,p-
phenoquinodimethane) series (Figure 4).10

Synthetically known poly(p-phenylene) has a degree of
polymerization of approximately 15 phenyl moieties.7 It has

been shown that this polymer has its rings nearly coplanar,
leading to good crystallinity and intercalation properties.5

Doped poly(p-phenylene) has been studied for use as electro-
chemically active electrodes in rechargeable batteries.6 Infinite
poly(p-phenylene) in Figure 3, unlike infinite polyacetylene
(Figure 1) and polyacene (Figure 2), has been shown to have a
significant nonzero bandgap, but yet finite polymers of poly-
(p-phenylene) are being made conductive by doping.6 This can
be explained as an end effect that cannot occur in polyacetylenes
or polyacenes by the results in Figure 4. Oxidants could convert
poly(p-phenylene) to the following poly(p,p-phenoquin-
odimethane) system, which is isoelectronic to the first series in
Figure 4.

Alternatively, if XY adds to a large poly(p-phenylene), one
would get the following system which is isoelectronic to the
second series in Figure 4.

Figure 7. Two-dimensional array of molecular graphs that are almost-isospectral to the corresponding molecular graphs given in Figure 8.
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Both series in Figure 4 are predicted to become conductive
in the infinite limit just as polyacetylene and polyacene are
predicted to become conductive. Thus, doping poly(p-phe-
nylene) not only changes its electron population but also
converts it to a quino type system.

Polynaphthalene

Polynaphthalene (also referred to as polyperylene and poly-
(perinaphthalene)) has been theoretically studied by Hosoya and
co-workers and Hall and Arimoto.10 The upper molecular graph
series in Figure 5 display the smallest polynaphthalene members;
the infinite limit member of this series is predicted to have a
zero bandgap.10 Naphthalene, perylene, terrylene, and quater-
rylene are known benzenoids.20 Polynaphthalene is thought to
result when 3,4,9,10-perylenetetracarboxylic anhydride is py-
rolyzed5 and during electrochemical polymerization of naph-
thalene.6 Figure 5 also presents another molecular graph series
that is almost-isospectral to the polynaphthalene series. Mirror-
plane fragmentation (through the long axis except for the first
generation structures) of any member of either series in Figure
5 generates a type I McClelland subgraph (without-1 weighted
vertexes) which is identical with the corresponding member of
the polyacetylene series; alternatively, any member of either
series in Figure 5 is embeddable by the corresponding member
of the polyacetylene series. Since the infinite limit member of
the polyacetylene series has a zero bandgap, then the limit
member of both series in Figure 5 must also have a zero
bandgap. In the same way mirror-plane fragmentation of the
infinite limit member of the polypentacene series gives polynaph-
thalene as a type I McClelland subgraph and, equivalently, has
a polynaphthalene Hall subgraph; therefore, infinite polypen-
tacene has a zero bandgap. The same is true for polyoctacene,
polyundecacene, and so on (per modulo-3). This is in agreement
with the work of Hosoya and co-workers.10 Klein and co-
workers24 and Gao and Herndon25 have shown that nonhelical
(principal axis of the tube is parallel to two sides of each

hexagon) buckytubes with a circumference of 3R hexagonal
rings (R is an integer) have zero HOMO-LUMO bandgaps;
all other nonhelical buckytubes always have nonzero bandgaps.
These results can be ascertained by mirror-plane fragmentation
and/or embedding methods discussed above. For example,
partial mirror-plane fragmentation of anR ) 1 nonhelical
buckytube or mirror-plane fragmentation of anR) 2 buckytube
both give polynaphthalene. For helical buckytubes with a pitch
of 1, the circumference selection rule for a zero bandgap is 3R
+ 1.

Polyanthracene

Polyanthracene has been studied by Hosoya and co-workers10

and is thought to be synthesized during electrochemical po-
lymerization of anthracene.6 The infinite limit members of the
polyanthracene and polytetracene (polynaphthacene) series are
predicted to have nonzero bandgaps.10 Figure 6 presents the
smallest members of the polyanthracene series and another series
whose members are pairwise almost-isospectral. Mirror-plane
fragmentation of any member of the polyanthracene series
through their long axis gives a member of the polyphenyl series
which also has a nonzero bandgap. Equivalently, any member
of the polyanthracene series can be embedded by the same
generation member of the polyphenyl series. Thus, polyphenyl
is both a McClelland and Hall subgraph of polyanthracene.
Proof that end effects of infinitely long conjugated polymers

can under certain circumstances be legitimately disregarded is
given by the fact that the six pairs of series previously
discussed10 and those in Figures 1-6 become isospectral (same
density of states) andidentical in the infinite limit by virtue of
this assumption.

Infinite Two-Dimensional Motifs of Almost-Isospectral
Series

Using the aufbau principle,17 the results given in Figures 1-6
can be generalized through the construction of Figures 7 and 8.

Figure 8. Two-dimensional array of molecular graphs that are almost-isospectral to the corresponding molecular graphs given in Figure 7.
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Every member of a given column in Figure 7 is almost-
isospectral to the corresponding generation member of the same

column in Figure 8. Similarly, every member of a given row
in Figure 7 is almost-isospectral to the corresponding generation

Figure 9. Two series of molecular graphs that are almost-isospectral. The unmatched(1 eigenvalues are indicated next to the first-generation
member of the lower series.

Figure 10. Two-dimensional array of molecular graphs that are almost-isospectral to the corresponding molecular graphs given in Figure 11.
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member of the same row in Figure 8. Since the columns and
rows of Figures 7 and 8 extend indefinitely, these figures contain
an infinite number of series having molecular graphs that are
pairwise almost-isospectral; for any given isospectral pair, the
molecular graph in Figure 7 has a distinct eigenvalue pair(1,
and its molecular graph counterpart in Figure 8 has a distinct
doubly degenerate eigenvalue set of 0,0. The plus formula
heading each column and row in Figures 7 and 8 identify the
formula of the aufbau unit used to generate all successive
molecular graphs in a column or row.
The bandgaps of the limit members to every row series in

Figure 7 were deduced to be zero by Hosoya and co-workers,10,33

whereas the bandgap is zero only for the limit members of the
second, fifth, eighth, and so on (per modulo-3) columns. Since
the limit member of every row makes up the limit column which
by necessity must be made up of all members with zero
bandgaps, it is deduced that the nonzero bandgaps associated
with the limit members of each non modulo-3 column also
approach a zero bandgap as one moves to the right in Figure 7.
All the remarks of this paragraph equally apply to almost-
isospectral counterparts listed in Figure 8.
Only the three largest molecular graphs (in the second and

third rows) explicitly shown in Figure 7 correspond to currently
unknown molecules.20 In comparison, only the two smallest
molecular graphs in Figure 8 correspond to molecules that have
been experimentally studied (i.e., bisallyl and 2,3,5,6-tetra-
methylen-1,4-cyclohexyldiyl) at low temperature by photolytic
generation in glassy matrixes.19,26 This is because all the
molecular graphs in Figure 8 correspond to disjoint diradical
molecules of high reactivity.18,27 Another property of note is

that each molecular graph in Figure 8 is an excised internal
structure17 of some molecular graph in Figure 7. Previously
we showed that circumscribing nondisjoint diradicals, like
trimethylenemethane diradical, lead to nondisjoint diradical
benzenoids, whereas circumscribing disjoint diradicals, like
bisallyl, generates closed-shell benzenoids.28,29 Here again it
should be observed that circumscribing any of the disjoint
diradicals in Figure 8 gives the corresponding closed-shell
benzenoid in Figure 7. The molecular graphs in the first row
and column of Figure 7 have no (connected) excised internal
structures. In general, within a given set of benzenoid isomers,
those having disjoint excised internal structures will have among
the smallest HOMO values.

Our previous results list a “formula periodic table for total
resonant sextet benzenoid hydrocarbons,”31 and list all the
structures of all essentially strain-free total resonant sextet
benzenoids having up to 60 carbon atoms.20 Total resonant
sextet benzenoids have a maximum number of rings (rsextet)
Nc/6) covered by resonant sextets (rings having three mutually
permutable pπ-bonds). Within their respective isomer sets, total
resonant sextet benzenoids have the largest HOMO andEπ

values. Figure 7 now lists all benzenoids which contain the
fewest resonant sextets, many which were identified by Hosoya
and co-workers.30 All the polyacenes in the first row of Figure
7 have only one resonant sextet and represent the least stable
isomer with the smallest HOMO values for a given cata-
condensed benzenoid formula. All the benzenoids in the second
row have a maximum of two resonant sextets, in the third row
have three resonant sextets, and so on.30 These benzenoids have

Figure 11. Two-dimensional array of molecular graphs that are almost-isospectral to the corresponding molecular graphs given in Figure 10.
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the fewest resonant sextets and among the smallest HOMO
values for their respective isomer sets. Benzene and biphenyl
in Figure 7 have a provisional status in our formula periodic
table for total resonant sextet benzenoids.31 The benzenoid
structures below the first row in Figures 7 and 8 have essential
single bonds separating the acene substructures, and all the
structures in Figure 8 additionally have essential single bonds
between the linear radical chain substructure and benzenoid
substructure (or another linear radical chain substructure in the
case of the first row series).
Starting with the first generation structures ofp-benzoquin-

odimethane and 3,4-diethenyl-1,3,5-hexatriene given in Figure
4 but oriented differently by 90°, the almost-isospectral series
given in Figure 9 is obtained. The graphitic polymer strips
corresponding to the first (upper) series in Figure 9 were
analytically investigated by Klein32 and Hosoya and co-
workers;33 the limit members of both these series are predicted
to have a nonzero bandgap. Figures 10 and 11 generalize the
results of Figures 4 and 9 and tallies an infinite number of related
almost-isospectral series of molecular graphs. The molecular
graphs in Figures 4, 9, 10, and 11 all haveK ) 1. We predict
that the limit member to all the column series in Figures 10
and 11 will have a zero bandgap.

Conclusion

By a completely different approach, this work has identified
the differences and similarities that exist between molecular
graphs belonging to graphitic networks and their precursors.
Specifically, an infinite two-dimensional array containing a
family of benzenoid structures can be mapped against another
two-dimensional array containing a related family of structures
establishing a pairwise almost-isospectral relationship between
their corresponding membership. HMO bandgaps and eigen-
values, excised internal structures, and the maximum number
of resonant sextets are correlated by this mapping.
Hosoya and co-workers have derived analytical expressions

for cyclic analogues of the acene series in Figure 2, polynaph-
thalene series in Figure 5, and polyanthracene series in Figure
6, which are only valid in the infinite limit for the linear series
having the same repeating unit (aufbau unit).10 Thus, infinite
cyclic and linearπ-electronic polymers with common repetitive
units have the same density of states. Using Hosoya’s method,10

it can be shown that each pair of series in Figures 2, 5, and 6
give the same cyclic monomeric analogue and therefore
previously derived analytical expressions.10 While analytical
expressions can generally be formulated for cyclic polymers,
finite linear polymers are generally more easily treated by
numerical and algorithmic methods. This work employs the
latter approach, which because of its greater simplicity has
revealed new insights.
While the sole example of an isospectral (odd carbon)

benzenoid pair has only recently been discovered,34 this work
demonstrates that almost-isospectral pairs which include ben-
zenoids as members are far more numerous. Although, the
smaller precursors to graphitic networks can look quite different,
as their size increases they begin to look more similar and in
the infinite limit become virtually identical. This work is a

contribution toward the development of a unified structure
theory of conjugated polycyclic hydrocarbons.35,36
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